Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.

Identifieur interne : 002696 ( Main/Exploration ); précédent : 002695; suivant : 002697

Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.

Auteurs : Fang K. Du [République populaire de Chine] ; Fang Xu ; Hong Qu ; Sisi Feng ; Jijun Tang ; Rongling Wu

Source :

RBID : pubmed:23593466

Descripteurs français

English descriptors

Abstract

BACKGROUND

Microsatellite markers or Simple Sequence Repeats (SSRs) are the most popular markers in population/conservation genetics. However, the development of novel microsatellite markers has been impeded by high costs, a lack of available sequence data and technical difficulties. New species-specific microsatellite markers were required to investigate the evolutionary history of the Euphratica tree, Populus euphratica, the only tree species found in the desert regions of Western China and adjacent Central Asian countries.

METHODOLOGY/PRINCIPAL FINDINGS

A total of 94,090 non-redundant Expressed Sequence Tags (ESTs) from P. euphratica comprising around 63 Mb of sequence data were searched for SSRs. 4,202 SSRs were found in 3,839 ESTs, with 311 ESTs containing multiple SSRs. The most common motif types were trinucleotides (37%) and hexanucleotides (33%) repeats. We developed primer pairs for all of the identified EST-SSRs (eSSRs) and selected 673 of these pairs at random for further validation. 575 pairs (85%) gave successful amplification, of which, 464 (80.7%) were polymorphic in six to 24 individuals from natural populations across Northern China. We also tested the transferability of the polymorphic eSSRs to nine other Populus species. In addition, to facilitate the use of these new eSSR markers by other researchers, we mapped them onto Populus trichocarpa scaffolds in silico and compiled our data into a web-based database (http://202.205.131.253:8080/poplar/resources/static_page/index.html).

CONCLUSIONS

The large set of validated eSSRs identified in this work will have many potential applications in studies on P. euphratica and other poplar species, in fields such as population genetics, comparative genomics, linkage mapping, QTL, and marker-assisted breeding. Their use will be facilitated by their incorporation into a user-friendly web-based database.


DOI: 10.1371/journal.pone.0061337
PubMed: 23593466
PubMed Central: PMC3623821


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.</title>
<author>
<name sortKey="Du, Fang K" sort="Du, Fang K" uniqKey="Du F" first="Fang K" last="Du">Fang K. Du</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China. dufang325@gmail.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Qu, Hong" sort="Qu, Hong" uniqKey="Qu H" first="Hong" last="Qu">Hong Qu</name>
</author>
<author>
<name sortKey="Feng, Sisi" sort="Feng, Sisi" uniqKey="Feng S" first="Sisi" last="Feng">Sisi Feng</name>
</author>
<author>
<name sortKey="Tang, Jijun" sort="Tang, Jijun" uniqKey="Tang J" first="Jijun" last="Tang">Jijun Tang</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23593466</idno>
<idno type="pmid">23593466</idno>
<idno type="doi">10.1371/journal.pone.0061337</idno>
<idno type="pmc">PMC3623821</idno>
<idno type="wicri:Area/Main/Corpus">002630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002630</idno>
<idno type="wicri:Area/Main/Curation">002630</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002630</idno>
<idno type="wicri:Area/Main/Exploration">002630</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.</title>
<author>
<name sortKey="Du, Fang K" sort="Du, Fang K" uniqKey="Du F" first="Fang K" last="Du">Fang K. Du</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China. dufang325@gmail.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Qu, Hong" sort="Qu, Hong" uniqKey="Qu H" first="Hong" last="Qu">Hong Qu</name>
</author>
<author>
<name sortKey="Feng, Sisi" sort="Feng, Sisi" uniqKey="Feng S" first="Sisi" last="Feng">Sisi Feng</name>
</author>
<author>
<name sortKey="Tang, Jijun" sort="Tang, Jijun" uniqKey="Tang J" first="Jijun" last="Tang">Jijun Tang</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Genetic Markers (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Internet (MeSH)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bases de données génétiques (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chine (MeSH)</term>
<term>Internet (MeSH)</term>
<term>Marqueurs génétiques (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Transcriptome (génétique)</term>
<term>Variation génétique (MeSH)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Microsatellite Repeats</term>
<term>Populus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Marqueurs génétiques</term>
<term>Populus</term>
<term>Répétitions microsatellites</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Databases, Genetic</term>
<term>Expressed Sequence Tags</term>
<term>Genetic Variation</term>
<term>Internet</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données génétiques</term>
<term>Cartographie chromosomique</term>
<term>Chine</term>
<term>Internet</term>
<term>Variation génétique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Microsatellite markers or Simple Sequence Repeats (SSRs) are the most popular markers in population/conservation genetics. However, the development of novel microsatellite markers has been impeded by high costs, a lack of available sequence data and technical difficulties. New species-specific microsatellite markers were required to investigate the evolutionary history of the Euphratica tree, Populus euphratica, the only tree species found in the desert regions of Western China and adjacent Central Asian countries.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>A total of 94,090 non-redundant Expressed Sequence Tags (ESTs) from P. euphratica comprising around 63 Mb of sequence data were searched for SSRs. 4,202 SSRs were found in 3,839 ESTs, with 311 ESTs containing multiple SSRs. The most common motif types were trinucleotides (37%) and hexanucleotides (33%) repeats. We developed primer pairs for all of the identified EST-SSRs (eSSRs) and selected 673 of these pairs at random for further validation. 575 pairs (85%) gave successful amplification, of which, 464 (80.7%) were polymorphic in six to 24 individuals from natural populations across Northern China. We also tested the transferability of the polymorphic eSSRs to nine other Populus species. In addition, to facilitate the use of these new eSSR markers by other researchers, we mapped them onto Populus trichocarpa scaffolds in silico and compiled our data into a web-based database (http://202.205.131.253:8080/poplar/resources/static_page/index.html).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The large set of validated eSSRs identified in this work will have many potential applications in studies on P. euphratica and other poplar species, in fields such as population genetics, comparative genomics, linkage mapping, QTL, and marker-assisted breeding. Their use will be facilitated by their incorporation into a user-friendly web-based database.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23593466</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.</ArticleTitle>
<Pagination>
<MedlinePgn>e61337</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0061337</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Microsatellite markers or Simple Sequence Repeats (SSRs) are the most popular markers in population/conservation genetics. However, the development of novel microsatellite markers has been impeded by high costs, a lack of available sequence data and technical difficulties. New species-specific microsatellite markers were required to investigate the evolutionary history of the Euphratica tree, Populus euphratica, the only tree species found in the desert regions of Western China and adjacent Central Asian countries.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">A total of 94,090 non-redundant Expressed Sequence Tags (ESTs) from P. euphratica comprising around 63 Mb of sequence data were searched for SSRs. 4,202 SSRs were found in 3,839 ESTs, with 311 ESTs containing multiple SSRs. The most common motif types were trinucleotides (37%) and hexanucleotides (33%) repeats. We developed primer pairs for all of the identified EST-SSRs (eSSRs) and selected 673 of these pairs at random for further validation. 575 pairs (85%) gave successful amplification, of which, 464 (80.7%) were polymorphic in six to 24 individuals from natural populations across Northern China. We also tested the transferability of the polymorphic eSSRs to nine other Populus species. In addition, to facilitate the use of these new eSSR markers by other researchers, we mapped them onto Populus trichocarpa scaffolds in silico and compiled our data into a web-based database (http://202.205.131.253:8080/poplar/resources/static_page/index.html).</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The large set of validated eSSRs identified in this work will have many potential applications in studies on P. euphratica and other poplar species, in fields such as population genetics, comparative genomics, linkage mapping, QTL, and marker-assisted breeding. Their use will be facilitated by their incorporation into a user-friendly web-based database.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Fang K</ForeName>
<Initials>FK</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China. dufang325@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Sisi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Jijun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="Y">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="Y">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020407" MajorTopicYN="N">Internet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23593466</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0061337</ArticleId>
<ArticleId IdType="pii">PONE-D-12-35285</ArticleId>
<ArticleId IdType="pmc">PMC3623821</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2002 Feb;30(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1980 May;32(3):314-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6247908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):233-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1994 Apr;16(4):656-60, 662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8024786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1994 Apr;3(4):599-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8069306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Silico Biol. 2006;6(6):607-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17518768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1991 Oct;49(4):746-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Apr 16;13:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22507374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 May 31;7:132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16737546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2002 Dec 31;9(6):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12597276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Aug 11;21(16):3911-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Oct 4;67(1):213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1655275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Oct 15;11:570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Oct;29(10):1237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1989 Mar;44(3):397-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2563634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Dec 16;10:278</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21162723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Jan;11(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11903900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Jan;23(1):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:412696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jan;10(1):72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10645952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2010;2:620-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Nov;276(5):436-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2013 Jan;13(1):144-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23134475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):680-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 May;277(5):469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Feb;97(2):234-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2011 Jul;11(4):591-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Oct;156(2):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2002;7(2A):537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12378259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2004 Jul;271(6):742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15197579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Dec;270(4):315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jun;18(6):881-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2010 Aug;121(4):731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Aug 25;17(16):6463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2780284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Feng, Sisi" sort="Feng, Sisi" uniqKey="Feng S" first="Sisi" last="Feng">Sisi Feng</name>
<name sortKey="Qu, Hong" sort="Qu, Hong" uniqKey="Qu H" first="Hong" last="Qu">Hong Qu</name>
<name sortKey="Tang, Jijun" sort="Tang, Jijun" uniqKey="Tang J" first="Jijun" last="Tang">Jijun Tang</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Du, Fang K" sort="Du, Fang K" uniqKey="Du F" first="Fang K" last="Du">Fang K. Du</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23593466
   |texte=   Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23593466" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020